Profit from Rhododendron Control

Mike Hale, Jenny Wong, Emma Youde, Caz Philips and Bryan Dickinson

 PRIFYSGOL CYMRU -UNIVERSITY OF WALES BANGOR
 Solution

School of Agricultural and Forest Sciences Wild Resources Limited wild

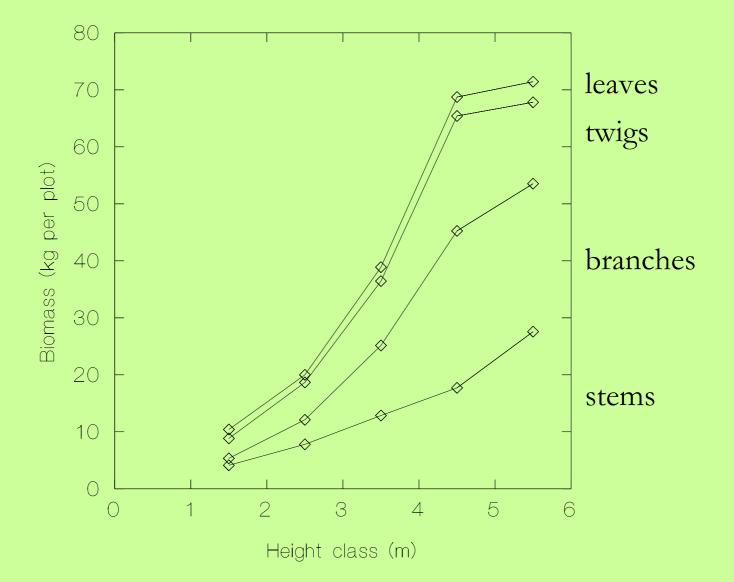
resources

Acknowledgements

Studies commissioned by: Beddgelert Rhododendron Management Group

Presentation:

Potential commercial products


- Charcoal
- Mulch
- Biofuel
- Foliage
- Phytochemical extraction
- Crafts

Biomass sampling design

- Stratified for open and shaded sites
- Random sampling from transect lines
- 2 x 2 m plots through the full height of the bushes
- Wood, branches, twigs and leaves weighted green on site
- Sub-sampled for dry weight determination

Open sites - biomass

Comparative yields

Material	Size	Volume
		m ³ ha ⁻¹
Open Rhododendron	> 2 cm d	66 – 264
	> 5 cm d	35 – 137
Conifer thinnings	> 7 cm d	3 – 44
Conifer main crop	> 7 cm d	238 – 656

Clearance costs

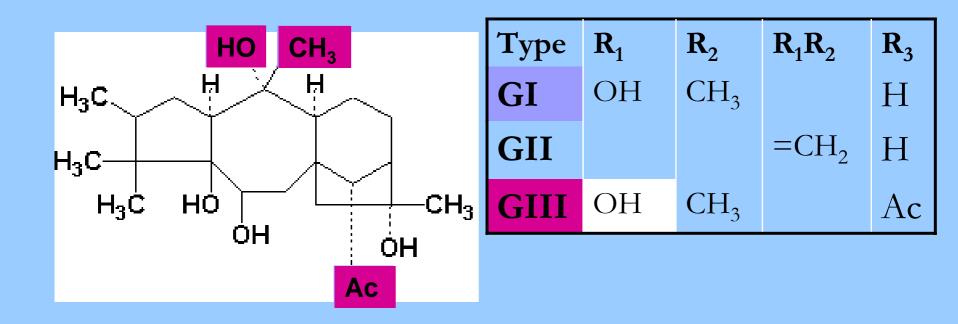
Operat	tion	Pick seedlings	Spray	Cut & spray	Manual cut	Stem injection
Bush s	ize	< 0.5 m	< 1 m	1-2 m	> 2 m	> 5 cm d
% site	< 20	15	18-75		1,800	13,000
cover	20-49	400	120- 150	566	2,500	
	> 50			1,000- 2,600	2,500- 5,500	

Contractor survey – 14 questionnaires - 36 job details

Comparative harvesting costs

Costs (£) per m ³	Rhododendron		Forestry	
per m ³	2-3 m tall	> 3 m tall	thinnings	felling
	39 m ³ ha ⁻¹	105 m ³ ha ⁻¹	50 m ³ ha ⁻¹	450 m ³ ha ⁻¹
Easy site	80	30	12	7
Difficult site	207	77	23	18

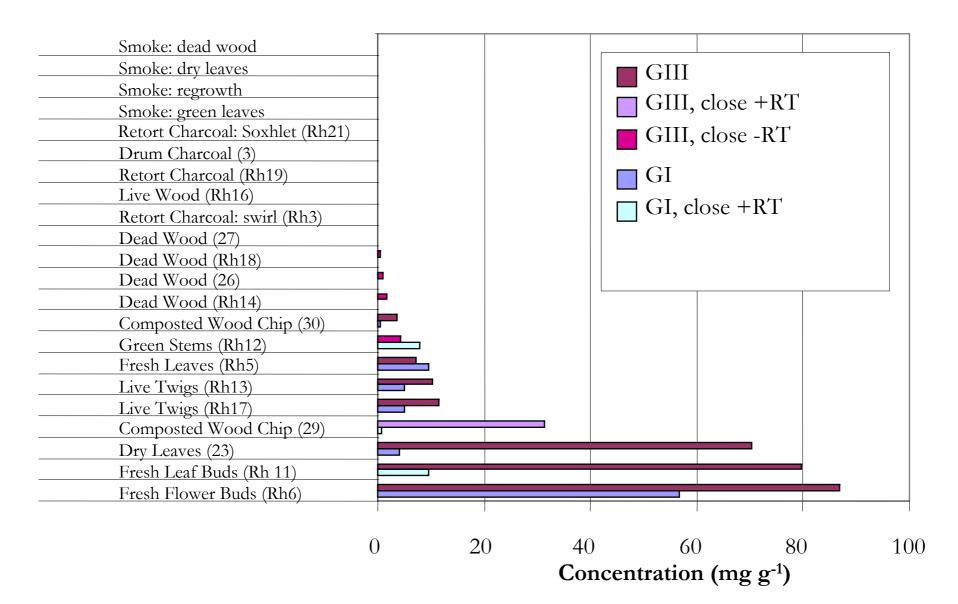
Costs of chipping


- Extraction costs from $\pounds 30$ per m³
- Chipping costs as much as $\pounds 29$ per m³
- Costs of haulage $\pounds 4$ per m³
- Economic threshold for haulage 50 miles from source
- Total cost = c. $\pounds 63$ per m³ delivered

Conclusions

- Rhododendron volumes per ha are ¼ of those from forestry final fellings
- Manual clearance costs as a basis for harvesting not competitive with forestry operations
- It is likely that even mechanised clearance will be more expensive than forestry operations because of lower available volumes

Toxic compounds


The main ones are Grayanotoxin I and III

Analysis for Grayanotoxins I & III

• Gas Chromatography gave reasonable certainty for the toxin GIII but was less reliable for GI

Grayanotoxins GI and GIII

Toxicity: Green material

• Most found in FRESH, GREEN material (flower buds, leaf buds and dry leaves)

 Substantial quantities of the toxins GI and GIII found here are consistent with an antifeedant role

Toxicity: Wood and charcoal

The dead wood itself contains *only* traces
Live wood *only* contains traces
The amounts detected in charcoal are, at best (or worst), traces

Toxicity: Smoke

• No grayanotoxins or very little in SMOKE but GC traces complex, with many peaks

Calorific value, bomb calorimetry

Material Rbododendron plant parts: Air-dried wood Freshly cut wood Air-dried leaves Green leaves (oven dried) Green leaves (not oven-dried) Green stems (not oven-dried) charcoal: Single drum charcoal: Retort

Douglas fir wood

21.85 24.79 20.90 20.96 8.98 9.88 28.14 34.85

Calorific value (kJ g⁻¹)

Mulch study Suitability as a mulch and rate of biodegradation of chips, leaves, wood and roots

Mulch: weed suppression properties

- Does rhododendron mulch have an allelopathic effect?
- If so then rhododendron chip could have a competitive advantage over other mulches

Method

- White clover planted in John Innes compost overlaid with differing depths of mulch
- Chipped rhododendron wood, leaves and roots tested separately and together as a 'pooled' mulch
- Compared to commercially available mulches and a 'control' of inert plastic spheres
- Every day the number of seeds that germinated through the mulch layer was recorded

Mulch suitability, results

- Significantly fewer seeds germinated under a mulch of shredded rhododendron leaves when compared to the inert control
- Shredded rhododendron leaves performed at least as well as commercial mulches
- 'Pooled' rhododendron chip performed better than rhododendron wood chip

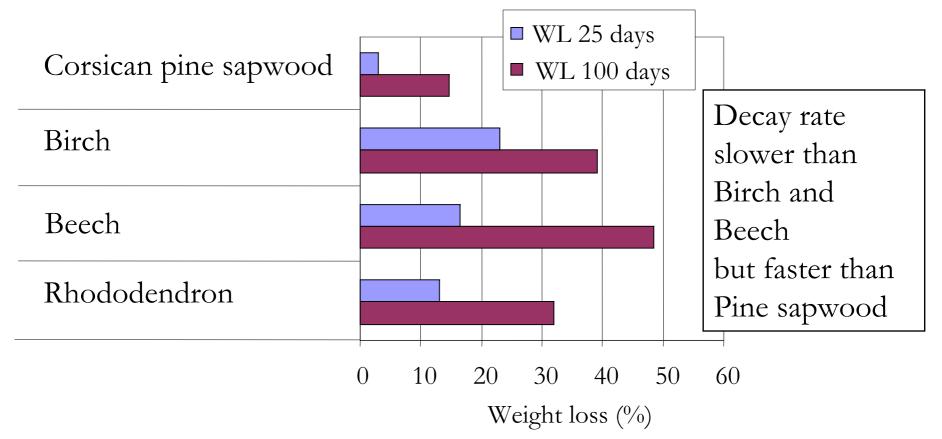
Implications

- Presence of rhododendron leaves improves the weed suppressing performance of the mulch
- Supports theory that phytochemicals in the leaves are active
- This implies that green material should not be separated from woody material if resource to be used as a mulch reducing costs

Decomposition study

- Done to examine persistence of **mulch**
- "litter bags" and wood blocks buried in soil for 25 and 100 days at high temperature and humidity
- Decay assessed by weight loss (%)

Materials decomposed

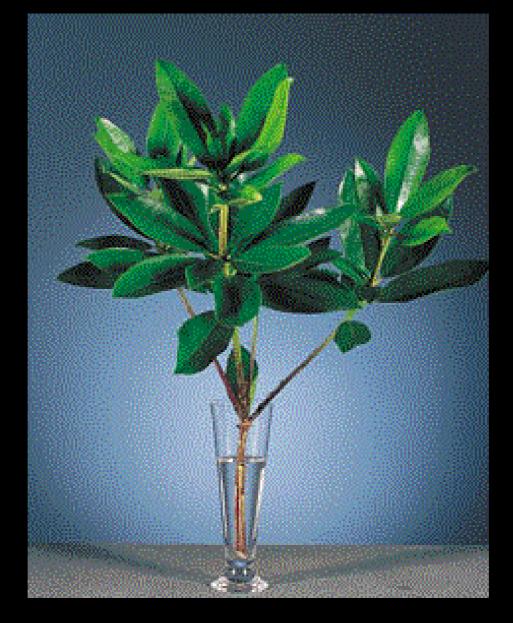

Litter bags	Wood blocks
Filter Paper	Rhododendron
Birch Leaves	Beech
Rh fine roots	Birch
Rh fresh green leaves	Corsican pine sapwood
Commercial chip, not Rh	
Old weathered Rh leaves	
Composted chip, not Rh	
Rh wood chips and leaves	
Rh wood chips	

Decomposition study (bag)

- Rh mulch initially decays at a slightly slower rate than other mulches but greater decay was seen with prolonged exposure
- This should provide an ideal mulch material
- The leaves decay rapidly when exposed within the soil. This is probably much faster than in the leaf litter layer
- The roots initially decayed rapidly but showed some recalcitrance at the later stages of decay

Decomposition study, wood blocks

weight losses (WL) after 25 and 100 days soil burial


Decomposition study, wood blocks

• Rh wood blocks not particularly durable for construction purposes or for the manufacture of composites like chipboard, OSB or MDF

Phytochemicals from *Rhododendron* spp.

- Desk study
- Very little done on *R. ponticum* since 1960s
- Other species more widely studied, R. *dauricum* and R. *latoucheae*, R. *adamsii*, R. *ellipticum*, R. *ferrugineum*, R. *molle*, R. *simsii*

Pesticidal	Anti-bacterial
HIV	Anti-oxidants
Yeasts, fungi	Expectorant
Cardiac stimulants	Pigments
Anti-cancer	

Muir of Ord

- 250 ha owned by FE
- Coppiced 8 yrs ago
- 25% of stems harvested each year
- Transported to Glasgow for sale
- Sold to the Netherlands
- Cash in hand for workers
- Operator sells ~200,000 stems per week

Killarney

• Private land

- Mostly open and semi-sheltered sites
 1 million stems harvested each year
- Sold into UK market via van Geest

Gailty Mountains

- ~ 1200 hectares owned by Coillte Teoranta
- Mostly sheltered sites, some open ground
- Sold into the UK through van Geest
- Piece rate system (per bundle)
- Majority pickers are Ukrainian
- Small team of local people (supervisors/managers)

Important site considerations

- Reasonable density of bushes
- Not too steep
- Close to road/track
- Shaded or sheltered sites preferred

Parts used

- Straight, 60 cm long shoots with perfect, regular leaves
- Stems with closed, perfect flower buds

Season

• August to May

Rhododendron control ?

- Prefer to work on coppice bushes
- Usually only ~ 25% of stems harvested
- Bushes maintained at ~ 2 m height
- Harvested bushes flower but at reduced rates
- One company does control in exchange for harvesting rights

PICKERS

- 90 p per bunch of 20 stems
- Income of £500-600 a week

WHOLESALERS

- Prices ~ 10p stem
- Large volume sales are profitable
- Demand growing

MARKETS

- All companies interested in sourcing from new areas
- Main UK buyer says there is room for another supplier
- Value addition (wreaths) is possible

Ecomonics

Good to turn – similar to Hornbeam
Very white and holds colour well
No nasty smells or irritations

Markets for chip

Biofuels market

- Customers pay 3 p per kW h⁻¹
- North Wales biofuel company prepared to
 INOT ECONOMIC ry waste
- No quality premium

Rh chip ~ $\pounds 59 \text{ m}^3$ for material at roadside

Wood chip mulch market

 Local contractor selling chip for £21 per m³ (cost price)

Rh chip production cost ~ $\pounds 63$ per m³

Charcoal

Larger scale manufacturers require:
straight 60 cm lengths 7-15 cm diameter
in loads of 3.5 m³
FSC certified

Small scale production not economic unless a significant price premium or very local markets can be assured

Best opportunities for income in northern Snowdonia

- 1. Foliage production
- 2. Souvenirs / crafts
- 3. Mulch
- 4. Biomass
- 5. Charcoal
- 6. Phytochemicals